Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khi nào thì $widehat xOy + widehat yOz widehat xOz$

Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề Khi nào thì $\widehat {xOy} + \widehat {yOz} = \widehat {xOz}$?, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu được khi nào thì xOy + yOz = xOz? + Nắm vững được khái niệm hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. Kĩ năng: + Nhận biết được hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. + Biết cách cộng số đo hai góc kề nhau có cạnh chung nằm giữa hai cạnh còn lại. + Tính được số đo góc, chỉ ra được tia nằm giữa hai tia. I. LÍ THUYẾT TRỌNG TÂM Tính chất cộng số đo hai góc: + Nếu tia Oy nằm giữa tia Ox và Oz thì xOy + yOz = xOz. + Ngược lại, nếu xOy + yOz = xOz thì Oy nằm giữa hai tia Ox và Oz. Lưu ý: + Ta có thể dùng kết quả sau: Nếu xOy + yOz khác xOz thì Oy không nằm giữa hai tia Ox và Oz. + Cộng liên tiếp: Nếu tia Oy nằm giữa hai tia Ox và Ot; tia Oz nằm giữa hai tia Oy và Ot thì: xOy + yOz + zOt = xOt. Hai góc kề nhau, phụ nhau, bù nhau: + Hai góc kề nhau là hai góc có cạnh chung và hai cạnh còn lại nằm trên hai nửa mặt phẳng đối nhau bờ chứa cạnh chung. + Hai góc phụ nhau là hai góc có tổng số đo bằng 90°. + Hai góc bù nhau là hai góc có tổng số đo bằng 180°. Lưu ý: + Hai góc kề bù là hai góc vừa kề nhau vừa bù nhau. Hai góc kề bù có tổng số đo bằng 180°. + Hai góc cùng phụ (hoặc cùng bù) với một góc thứ ba thì bằng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính số đo góc. Sử dụng nhận xét và định nghĩa sau: + Nếu tia Oy nằm giữa hai tia Ox và Oz thì xOy + yOz = xOz. + Hai góc bù nhau có tổng số đo bằng 180°. + Hai góc phụ nhau có tổng số đo bằng 90°. Dạng 2 : Tia nằm giữa hai tia, tính số đo góc. Nếu xOy + yOz = xOz thì tia Oy nằm giữa hai tia Ox và Oz.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có tâm đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT O là trung điểm của đoạn thẳng AB ta nói hai điểm A và B đối xứng nhau qua O. Hình có tâm đối xứng. Tâm đối xứng. Hình bình hành ABCD là hình có tâm đối xứng và giao điểm O của hai đường chéo là tâm đối xứng của hình bình hành ABCD. Đường tròn (O) là hình có tâm đối xứng. Tâm O là tâm đối xứng của đường tròn (O). B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có trục đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm hình có trục đối xứng. – Cho hình (H). Nếu có một đường thẳng d chia hình (H) thành hai phần bằng nhau mà khi “gấp” hình theo đường thẳng d thấy hai phần đó “chồng khít” lên nhau thì hình (H) được gọi là hình có trục đối xứng. – Đường thẳng d nói trên được gọi là trục đối xứng của hình (H). 2. Chú ý. – Hình có trục đối xứng còn được gọi là hình đối xứng trục. – Không phải hình nào cũng đều có trục đối xứng. – Một hình có thể có một, hai, ba, … trục đối xứng, có thể có vô số trục đối xứng. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình chữ nhật, hình thoi, hình bình hành, hình thang cân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình chữ nhật, hình thoi, hình bình hành, hình thang cân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình chữ nhật. Hình chữ nhật ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Bốn góc đỉnh A, B, C, D bằng nhau và bằng góc vuông. + Hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 2. Hình thoi. Hình thoi ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Bốn cạnh bằng nhau: AD = BC = AB = DC. + Hai đường chéo vuông góc với nhau: AC, BD vuông góc với nhau. 3. Hình bình hành. Hình bình hành ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 4. Hình thang cân. Hình thang cân ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đáy song song: AB song song với CD. + Hai cạnh bên bằng nhau: AD = BC. + Hai góc kề 1 đáy bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo bằng nhau: AC = BD. B. BÀI TẬP TRẮC NGHIỆM