Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

10 chuyên đề ôn thi THPT QG môn Toán theo mức độ - Phạm Hoàng Điệp
Tài liệu gồm 542 trang, được biên soạn bởi Th.S Phạm Hoàng Điệp, tuyển tập 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ, giúp học sinh lớp 12 tham khảo để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán do Bộ Giáo dục và Đào tạo tổ chức. PHẦN 1. ĐẠI SỐ VÀ GIẢI TÍCH. 1 Tổ hợp – Xác suất. A Kiến thức cần nhớ. 1. Hai quy tắc đếm cơ bản. 2. Hoán vị – Chỉnh hợp – Tổ hợp. 3. Tính xác suất. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 2 Dãy số – Cấp số cộng – Cấp số nhân. A Kiến thức cần nhớ. 1. Cấp số cộng. 2. Cấp số nhân. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3 Hàm số. A Kiến thức cần nhớ. 1. Tính đơn điệu của hàm số. 2. Điểm cực trị của hàm số. 3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. 4. Tiệm cận của đồ thị hàm số. 5. Khảo sát và vẽ đồ thị hàm số. 6. Sự tương giao đồ thị. 7. Đạo hàm của hàm số hợp. 8. Lập bảng biến thiên của hàm số y = f(x) khi biết đồ thị hàm số y = f'(x). 9. Lập bảng biến thiên của hàm số g(x) = f(x) + u(x) khi biết đồ thị hàm số y = f'(x). B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 4 Lô-ga-rít. A Kiến thức cần nhớ. 1. Các công thức thường dùng để giải phương trình – bất phương trình lô-ga-rít. 2. Các công thức thường dùng để giải phương trình – bất phương trình mũ. 3. Hàm số mũ. 4. Hàm số lô-ga-rít. 5. Giới hạn đặc biệt. 6. Đạo hàm. 7. Áp dụng tính đơn điệu. 8. Lãi đơn. 9. Lãi kép. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 5 Nguyên hàm – Tích phân – Ứng dụng. A Kiến thức cần nhớ. 1. Định nghĩa nguyên hàm. 2. Tính chất nguyên hàm. 3. Bảng nguyên hàm của một số hàm thường gặp. 4. Một số phương pháp tính nguyên hàm. 5. Nguyên hàm của hàm ẩn. 6. Định nghĩa tích phân. 7. Tính chất tích phân. 8. Phương pháp đổi biến số. 9. Phương pháp tích phân từng phần. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 6 Số phức. A Kiến thức cần nhớ. 1. Định nghĩa. 2. Số phức liên hợp. 3. Biễu diễn hình học. 4. Môđun của số phức. 5. Các phép toán trên tập số phức. 6. Căn bậc hai của số thực âm. 7. Giải phương trình bặc hai trên tập số. 8. Điểm biểu diễn số phức. 9. Nhận xét. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. PHẦN 2. HÌNH HỌC. 1 Góc và khoảng cách trong không gian. A Kiến thức cần nhớ. 1. Góc giữa hai đường thẳng. 2. Góc giữa đường thẳng và mặt phẳng. 3. Góc giữa hai mặt phẳng. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 2 Khối đa diện. A Kiến thức cần nhớ. 1. Thể tích khối chóp. 2. Thể tích lăng trụ. 3. Tỉ số thể tích. 4. Các diện tích đa giác thường gặp. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 3 Khối tròn xoay. A Kiến thức cần nhớ. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 4 Hình học không gian Oxyz. A Kiến thức cần nhớ. 1. Tọa độ vec-tơ và tọa độ điểm. 2. Đường thẳng. 3. Mặt phẳng. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4.
Tuyển tập 200 bài toán VD - VDC hay nhất ôn thi THPT 2020 - 2021 môn Toán
Tài liệu gồm 188 trang, được biên soạn bởi cô giáo Ngọc Huyền, tuyển tập 200 bài toán mức độ vận dụng – vận dụng cao (VD – VDC) hay nhất ôn thi tốt nghiệp THPT năm học 2020 – 2021 môn Toán, có đáp án và lời giải chi tiết; đây là món quà tác giả gửi tặng các em học sinh lớp 12 nhân dịp Giao Thừa chuyển sang năm mới Tân Sửu. Mục lục tài liệu tuyển tập 200 bài toán VD – VDC hay nhất ôn thi THPT 2020 – 2021 môn Toán: A. Đề bài I. Hàm số (Trang 3). II. Mũ – logarit (Trang 11). III. Tích phân (Trang 13). IV. Số phức (Trang 16). V. Thể tích khối đa diện (Trang 18). VI. Khối tròn xoay (Trang 23). VII. Hình tọa độ Oxyz (Trang 27). VIII. Tổ hợp – Xác suất | Giới hạn | Cấp số (Trang 34). B. Hướng dẫn giải chi tiết I. Hàm số (Trang 36). II. Mũ – logarit (Trang 74). III. Tích phân (Trang 83). IV. Số phức (Trang 95). V. Thể tích khối đa diện (Trang 109). VI. Khối tròn xoay (Trang 135). VII. Hình tọa độ Oxyz (Trang 147). VIII. Tổ hợp – Xác suất | Giới hạn | Cấp số (Trang 177).
Tổng hợp lý thuyết Toán THPT - Nguyễn Trọng Đoàn
Tài liệu gồm 70 trang, được biên soạn bởi thầy giáo Nguyễn Trọng Đoàn, tổng hợp lý thuyết Toán THPT, giúp học sinh tra cứu khi học chương trình Toán 10, Toán 11, Toán 12 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu tổng hợp lý thuyết Toán THPT – Nguyễn Trọng Đoàn: I. LÍ THUYẾT LỚP 10 1. Đại số 10. Chương 1. Mệnh đề – tập hợp. Chương 2. Hàm số bậc nhất và hàm số bậc hai. Chương 3. Phương trình và hệ phương trình. Chương 4. Bất đẳng thức. Chương 6. Góc lượng giác và công thức lượng giác. 2. Hình học 10. Chương 1. Vec tơ. Chương 2. Tích vô hướng hai vec tơ và ứng dụng. Chương 3. Phương pháp tọa độ trong mặt phẳng. II. LÍ THUYẾT LỚP 11 1. Đại số và Giải tích 11. Chương 1. Hàm số lượng giác và phương trình lượng giác. Chương 2. Tổ hợp – xác suất. Chương 3. Dãy số – cấp số cộng – cấp số nhân. Chương 4. Giới hạn. Chương 5. Đạo hàm. 2. Hình học 11. Chương 1. Phép biến hình. Chương 2. Quan hệ song song trong không gian. Chương 3. Quan hệ vuông góc trong không gian. III. LÍ THUYẾT LỚP 12 1. Giải tích 12. Chương 1. Ứng dụng đạo hàm và khảo sát hàm số. Chương 2. Hàm số lũy thừa – mũ – logarit. Chương 3. Nguyên hàm – tích phân. Chương 4. Số phức. 2. Hình học 12. Chương 1. Khối đa diện và thể tích khối đa diện. Chương 2. Mặt trụ – mặt nón – mặt cầu. Chương 3. Phương pháp tọa độ trong không gian.
15 dạng toán VD - VDC ôn thi THPT môn Toán
Tài liệu gồm 777 trang, tuyển chọn các câu hỏi và bài tập trắc nghiệm 15 dạng toán vận dụng – vận dụng cao (VD – VDC) ôn thi THPT môn Toán; các câu hỏi và bài tập được sáng tác, phát triển dựa trên đề minh họa tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo, có đáp án và lời giải chi tiết. Mục lục tài liệu 15 dạng toán VD – VDC ôn thi THPT môn Toán: + Dạng toán 1. Tính xác suất bằng định nghĩa. + Dạng toán 2. Tính khoảng cách giữa hai đường thẳng chéo nhau. + Dạng toán 3. Tích phân. + Dạng toán 4. Tìm tham số để hàm số bậc nhất / bậc nhất đơn điệu. + Dạng toán 5. Khối nón. + Dạng toán 6. Lôgarit. + Dạng toán 7. Giá trị lớn nhất và giá trị nhỏ nhất hàm số trị tuyệt đối chứa tham số. + Dạng toán 8. Phương trình lôgarit chứa tham số. + Dạng toán 9. Nguyên hàm từng phần. + Dạng toán 10. Bài toán liên quan đến giao điểm của hai đồ thị. + Dạng toán 11. Tìm cực trị hàm hợp f(u(x)) khi biết đồ thị hàm số f(x) hoặc f'(x). + Dạng toán 12. Ứng dụng phương pháp hàm số để giải phương trình mũ – lôgarit. + Dạng toán 13. Tích phân liên quan đến hàm ẩn. + Dạng toán 14. Tính thể tích khối đa diện. + Dạng toán 15. Tính đơn điệu của hàm liên kết.