Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập Toán 10 học kì 1 sách Chân Trời Sáng Tạo

Tài liệu gồm 436 trang, được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi, bao gồm tóm tắt lí thuyết, các dạng toán thường gặp và bài tập rèn luyện môn Toán 10 học kì 1 sách Chân Trời Sáng Tạo (CTST). Chương 1 . MỆNH ĐỀ VÀ TẬP HỢP 2. Bài 1 . MỆNH ĐỀ 2. A Tóm tắt lí thuyết 2. B Các dạng toán thường gặp 6. + Dạng 1. Nhận diện, xét tính đúng sai của mệnh đề, mệnh đề chứa biến 6. + Dạng 2. Phủ định của một mệnh đề 7. + Dạng 3. Mệnh đề kéo theo, mệnh đề đảo, mệnh đề tương đương 8. + Dạng 4. Mệnh đề với kí hiệu ∀ và ∃ 9. C Bài tập rèn luyện 11. Bài 2 . TẬP HỢP 21. A Tóm tắt lí thuyết 21. B Một số dạng toán thường gặp 24. + Dạng 1. Tập hợp và phần tử của tập hợp 24. + Dạng 2. Tập con. Tập bằng nhau 25. + Dạng 3. Thực hiện các phép toán trên tập hợp 28. + Dạng 4. Dùng biểu đồ Ven và công thức tính số phần tử của tập hợp A ∪ B 29. + Dạng 5. Xác định giao – hợp của hai tập hợp 30. + Dạng 6. Xác định hiệu và phần bù của hai tập hợp 31. C Bài tập rèn luyện 33. Bài 3 . ÔN TẬP CHƯƠNG 1 47. A Bài tập tự luận 47. B Bài tập trắc nghiệm 54. Chương 2 . BẤT PHƯƠNG TRÌNH, HỆ BẤT PHƯƠNG TRÌNH 62. Bài 1 . BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 62. A Tóm tắt lí thuyết 62. B Các dạng toán và bài tập 64. + Dạng 1. Biểu diễn tập nghiệm của bất phương trình bậc nhất hai ẩn 64. + Dạng 2. Áp dụng vào bài toán thực tiễn 65. C Bài tập rèn luyện 67. Bài 2 . HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 87. A Tóm tắt lí thuyết 87. B Các dạng toán và bài tập 88. + Dạng 1. Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn 88. + Dạng 2. Ứng dụng hệ bất phương trình bậc nhất hai ẩn giải bài toán tối ưu 90. C Bài tập rèn luyện 93. Bài 3 . BÀI TẬP CUỐI CHƯƠNG 2 105. A Bài tập 105. B Luyện tập 107. Chương 3 . HÀM SỐ, ĐỒ THỊ VÀ ỨNG DỤNG 114. Bài 1 . HÀM SỐ 114. A Tóm tắt lí thuyết 114. B Các dạng toán và ví dụ 116. + Dạng 1. Tìm tập xác định của hàm số 116. + Dạng 2. Tính giá trị của hàm số tại một điểm 118. + Dạng 3. Dùng định nghĩa xét tính đơn điệu của hàm số 119. + Dạng 4. Xét tính chẵn lẻ của hàm số 121. + Dạng 5. Tính đơn điệu của hàm bậc nhất 122. + Dạng 6. Dùng đồ thị xét tính đơn điệu của hàm số 124. C Bài tập rèn luyện 127. Bài 2 . HÀM SỐ BẬC HAI 145. A Tóm tắt lí thuyết 145. B Các dạng toán và ví dụ 147. + Dạng 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = ax2 + bx + c (a khác 0) 147. + Dạng 2. Tìm tham số m để hàm số bậc 2 đơn điệu trên tập con của R 148. + Dạng 3. Tìm GTLN, GTNN của hàm số y = ax2 + bx + c trên R và tập con của R 149. + Dạng 4. Xác định hàm số bậc hai khi biết các yếu tố liên quan 151. + Dạng 5. Các bài toán tương giao 152. + Dạng 6. Điểm đặc biệt của họ đồ thị hàm số bậc hai 155. C Bài tập rèn luyện 158. Bài 3 . DẤU CỦA TAM THỨC BẬC HAI 172. A Tóm tắt lý thuyết 172. B Các dạng toán thường gặp 175. + Dạng 1. Nhận dạng tam thức và xét dấu biểu thức 175. + Dạng 2. Giải các bài toán liên quan đến bất phương trình 176. + Dạng 3. Các bài toán liên quan bất phương bậc hai chứa tham số m 177. + Dạng 4. Tìm nghiệm và lập bảng xét dấu của tam thức bậc hai thông qua đồ thị 178. + Dạng 5. Ứng dụng thực tế 179. C Bài tập rèn luyện 181. Bài 4 . PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI 191. A Tóm tắt lí thuyết 191. B Các dạng toán thường gặp 192. + Dạng 1. Giải phương trình dạng p f(x) = pg(x) 192. + Dạng 2. Giải phương trình dạng p f(x) = g(x) 192. + Dạng 3. Bài toán thực tế 193. C Bài tập rèn luyện 194. Bài 5 . ÔN TẬP CHƯƠNG VI 210. A Trắc nghiệm 210. B Tự luận 225. Chương 4 . HỆ THỨC LƯỢNG TRONG TAM GIÁC 234. Bài 1 . GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0◦ ĐẾN 180◦ 234. A Tóm tắt lí thuyết 234. B Các dạng toán thường gặp 234. + Dạng 1. Xét dấu của các giá trị lượng giác 234. + Dạng 2. Tính các giá trị lượng giác 235. C Bài tập rèn luyện 239. D Luyện tập 244. Bài 2 . HỆ THỨC LƯỢNG TRONG TAM GIÁC 251. A Tóm tắt lý thuyết 251. B Các dạng toán thường gặp 251. + Dạng 1. Tính các đại lượng trong tam giác 251. + Dạng 2. Chứng minh các hệ thức 253. + Dạng 3. Giải tam giác và ứng dụng thực tế 254. C Bài tập rèn luyện 258. Bài 3 . ÔN TẬP CHƯƠNG 3 282. A Bài tập tự luận 282. B Bài tập trắc nghiệm 288. Chương 5 . VÉC TƠ 296. Bài 1 . CÁC KHÁI NIỆM MỞ ĐẦU 296. A Tóm tắt lý thuyết 296. B Các dạng toán thường gặp 297. + Dạng 1. Xác định một véc-tơ 297. + Dạng 2. Sự cùng phương và hướng của hai véc-tơ 297. + Dạng 3. Hai véc-tơ bằng nhau, độ dài của véc-tơ 298. C Bài tập rèn luyện 300. Bài 2 . TỔNG VÀ HIỆU CỦA HAI VÉC TƠ 319. A Tóm tắt lí thuyết 319. B Các dạng toán thường gặp 320. + Dạng 1. Tổng, hiệu của hai hay nhiều véctơ 320. + Dạng 2. Chứng minh đẳng thức véctơ 321. + Dạng 3. Xác định vị trí của một điểm nhờ đẳng thức véctơ 322. + Dạng 4. Tính độ dài của tổng, hiệu các véctơ 324. C Bài tập rèn luyện 326. Bài 3 . TÍCH MỘT SỐ VỚI MỘT VÉC TƠ 346. A Tóm tắt lý thuyết 346. B Các dạng toán 351. + Dạng 1. Xác định hai véc-tơ cùng hướng, ngược hướng 351. + Dạng 2. Tìm mô-đun (độ dài) véc-tơ 351. + Dạng 3. Chứng minh ba điểm M, N, P thẳng hàng 353. + Dạng 4. Biểu diễn véc-tơ qua hai véc-tơ không cùng phương 354. + Dạng 5. Chứng minh đẳng thức véc-tơ 355. + Dạng 6. Xác định điểm thoả mãn đẳng thức véc-tơ 358. + Dạng 7. Ứng dụng thực tế của véc-tơ 359. C Bài tập luyện tập 361. D Bài tập rèn luyện 364. Bài 4 . VECTƠ TRONG MẶT PHẲNG TỌA ĐỘ 378. A Tóm tắt lí thuyết 378. B Các dạng toán thường gặp 382. + Dạng 1. Tọa độ của điểm và độ dài đại số của một véc-tơ trên trục 382. + Dạng 2. Tọa độ của điểm và của véc-tơ 383. + Dạng 3. Tọa độ của điểm và véc-tơ thỏa mãn điều kiên cho trước 384. + Dạng 4. Phân tích một véc-tơ theo hai véc-tơ không cùng phương 386. + Dạng 5. Chứng minh ba điểm thẳng hàng, véc-tơ cùng phương, hai đường thẳng song song 387. C Bài tập rèn luyện 389. Bài 5 . TÍCH VÔ HƯỚNG CỦA HAI VÉC – TƠ 402. A Tóm tắt lí thuyết 402. B Các dạng toán thường gặp 404. + Dạng 1. Xác định góc giữa hai véc-tơ 404. + Dạng 2. Tính tích vô hướng 405. + Dạng 3. Tính góc giữa hai véc-tơ 406. + Dạng 4. Ứng dụng của tích vô hướng 406. C Bài tập rèn luyện 408. Bài 6 . ÔN TẬP CUỐI CHƯƠNG IV 418. A Bài tập trắc nghiệm 418. B Bài tập tự luận 425.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 - 2022 trường THPT Thạch Bàn - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 tài liệu đề cương hướng dẫn ôn tập học kì 1 môn Toán khối 10 năm học 2021 – 2022 trường THPT Thạch Bàn, quận Long Biên, thành phố Hà Nội. A. NỘI DUNG ÔN TẬP PHẦN I . ĐẠI SỐ. I. MỆNH ĐỀ – TẬP HỢP (nội dung tương tự giữa kì I). 1. Tập hợp, tập con; các tập hợp con của tập hợp số thực. 2. Các phép toán tập hợp: giao, hợp, hiệu. II. HÀM SỐ, HÀM SỐ BẬC NHẤT, BẬC HAI. 1. Tập xác định, tính chẵn lẻ của hàm số. 2. Lập bảng biến thiên, vẽ đồ thị hàm số bậc nhất, hàm số bậc hai. 3. Xác định được công thức hàm số khi biết các yếu tố liên quan. 4. Sự tương giao giữa đường thẳng và parabol. III. PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. 1. Điều kiện xác định của phương trình; các phép biến đổi tương đương. 2. Giải một số phương trình (phương trình căn thức, phương trình chứa dấu giá trị tuyệt đối …) bằng cách đưa về phương trình bậc nhất, bậc hai. 3. Giải và biện luân nghiệm của phương trình bậc nhất, bậc hai. 4. Định lý Viete cho phương trình bậc hai. 5. Giải và biện luận nghiệm của hệ phương trình. IV. BẤT ĐẲNG THỨC. 1. Vận dụng định lý Cô – si để chứng minh các bất đẳng thức. PHẦN II . HÌNH HỌC. I. CÁC KHÁI NIỆM. 1. Các khái niệm về vectơ: giá, độ lớn của vectơ, hai vectơ cùng phương, cùng hướng, bằng nhau, đối nhau … (nội dung tương tự giữa học kì I). 2. Hệ trục tọa độ trong mặt phẳng. Vận dụng các kiến thức cơ bản để giải một số dạng toán thường gặp: + Chứng minh một đẳng thức vectơ. + Xác định điểm M thoả mãn một đẳng thức vec tơ cho trước. + Phân tích một vec tơ theo hai vectơ không cùng phương. + Chứng minh ba điểm thẳng hàng. + Tính độ dài của vectơ. + Tìm tọa độ vectơ, tọa độ điểm. + Chỉ ra các vectơ cùng phương, cùng hướng. II. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. 1. Góc giữa hai vectơ. 2. Tích vô hướng của hai vectơ: định nghĩa và biểu thức tọa độ. 3. Ứng dụng của tích vô hướng. B. BÀI TẬP THAM KHẢO I. BÀI TẬP TỰ LUẬN. HÀM SỐ – HÀM SỐ BẬC NHẤT – HÀM SỐ BẬC HAI. PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. VECTƠ – TÍCH VÔ HƯỚNG. II. BÀI TẬP TRẮC NGHIỆM. MỨC ĐỘ NHẬN BIẾT – THÔNG HIỂU. MỨC ĐỘ VẬN DỤNG – VẬN DỤNG CAO. III. MỘT SỐ ĐỀ TỰ LUẬN THAM KHẢO. ĐỀ 1. ĐỀ 2.
Đề cương ôn thi học kì 1 Toán 10 năm 2021 - 2022 trường THPT Việt Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề cương ôn thi học kì 1 Toán 10 năm 2021 – 2022 trường THPT Việt Đức – Hà Nội; đề cương hướng dẫn nội dung kiến thức cần ôn tập và một số đề thi HK1 Toán 10 tham khảo. I. Nội dung chương trình. Đại số: Hàm số bậc hai, đại cương về phương trình, phương trình bậc nhất, bậc hai và một số phương trình quy về bậc nhất, bậc hai. Hình học: Tích của một vec tơ với 1 số, trục và hệ trục tọa độ, tích vô hướng của hai vectơ. II. Cấu trúc đề. 50 câu trắc nghiệm – Thời gian làm bài: 90 phút. III. Các đề ôn tập.
Đề cương HK1 Toán 10 năm 2021 - 2022 trường Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề cương ôn tập cuối học kỳ 1 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên. HÌNH THỨC KIỂM TRA: Kiểm tra 90 phút: Trắc nghiệm 35 câu – 7 điểm + Tự luận – 3 điểm. NỘI DUNG KIỂM TRA: A – ĐẠI SỐ 1. Mệnh đề – Tập hợp. 2. Hàm số. – Tập xác định của hàm số. – Tính đồng biến, nghịch biến của hàm số. – Hàm số chẵn, hàm số lẻ. – Đồ thị của hàm số. – Sự biến thiên và đồ thị của hàm số bậc nhất, hàm số bậc hai. – Sự biến thiên và đồ thị của hàm số bậc nhất trên từng khoảng. 3. Phương trình. – Phương trình bậc nhất và bậc hai một ẩn. + Giải và biện luận phương trình ax + b = 0. + Giải và biện luận phương trình ax2 + bx + c = 0. + Ứng dụng của Định lý Vi-et cho phương trình bậc hai. – Một số phương trình quy về phương trình bậc nhất hoặc bậc hai. + Giải phương trình chứa ẩn trong dấu giá trị tuyệt đối. + Giải phương trình chứa ẩn ở mẫu thức. + Giải phương trình chứa ẩn trong dấu căn bậc hai. + Giải phương trình bằng phương pháp đặt ẩn phụ. 4. Hệ phương trình bậc nhất, bậc hai. B – HÌNH HỌC 1. Vectơ. – Phương, hướng, độ dài của vectơ; hai vectơ bằng nhau. – Các phép toán vectơ: Tổng, hiệu của hai vectơ (quy tắc 3 điểm, quy tắc hình bình hành …). – Tích của một vectơ với một số. – Biểu diễn một vectơ theo hai vectơ không cùng phương. – Chứng minh ba điểm thẳng hàng. 2. Hệ trục tọa độ. – Tọa độ của vectơ, tọa độ của điểm đối với hệ trục tọa độ. – Chứng minh ba điểm thẳng hàng. 3. Giá trị lượng giác của một góc bất kỳ từ 0o đến 180o. 4. Tích vô hướng của hai vectơ. – Bài toán về tích vô hướng của hai vectơ. – Bài toán về biểu thức tọa độ của tích vô hướng của hai vectơ.
Hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 - 2022 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 tài liệu đề cương hướng dẫn ôn tập học kì 1 Toán 10 năm 2021 – 2022 trường Vinschool – Hà Nội. I. KIẾN THỨC TRỌNG TÂM 1. Đại số: – Mệnh đề, tập hợp, các phép toán trên tập hợp. – Khái niệm hàm số, hàm số bậc nhất, bậc hai và một số vấn đề liên quan: tập xác định, tính chẵn lẻ, hàm số đồng biến, nghịch biến, đồ thị hàm số, tương giao của hai đồ thị. – Điều kiện xác định của phương trình, phương trình tương đương, phương trình hệ quả; các phép biến đổi tương đương, hệ quả. – Giải và biện luận phương trình bậc nhất, bậc hai, định lý Vi-ét và ứng dụng. – Phương trình chứa ẩn ở mẫu số, phương trình chứa dấu giá trị tuyệt đối, phương trình chứa ẩn dưới dấu căn, phương trình qui về phương trình bậc nhất, bậc hai. – Phương trình, hệ phương trình bậc nhất nhiều ẩn (khái niệm, giải hệ phương trình bậc nhất nhiều ẩn, biện luận nghiệm). – Khái niệm và các tính chất của bất đẳng thức, các phép biến đổi tương đương bất đẳng thức, một số bất đẳng thức cơ bản, bất đẳng thức Côsi và các ứng dụng. 2. Hình học: – Vectơ, tổng và hiệu của hai vectơ; quy tắc ba điểm, quy tắc hình bình hành, quy tắc trừ và các tính chất. – Định nghĩa tích vectơ với một số, các tính chất của tích vectơ với một số, điều kiện để hai vectơ cùng phương; tính chất trung điểm của một đoạn thẳng và tính chất trọng tâm của tam giác. – Tọa độ của vectơ, tọa độ của điểm. – Biểu thức tọa độ của các phép toán vectơ, độ dài vectơ và khoảng cách giữa hai điểm, tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác. – Giá trị lượng giác của góc bất kì từ 0° đến 180°. – Tích vô hướng của hai vectơ và biểu thức tọa độ của tích vô hướng. II. BÀI TẬP TỰ LUẬN 1. Đại số. 1.1. Hàm số, hàm số bậc nhất, hàm số bậc hai. 1.2. Phương trình, hệ phương trình. 1.3. Bất đẳng thức. 2. Hình học. III. BÀI TẬP TRẮC NGHIỆM 1. Đại số. 1.1. Mệnh đề, tập hợp và các phép toán. 1.2. Hàm số, hàm số bậc nhất, hàm số bậc hai. 1.3. Phương trình, phương trình bậc nhất, phương trình bậc hai, phương trình chứa dấu giá trị tuyệt đối, phương trình chứa căn thức. 1.4. Hệ phương trình bậc nhất hai ẩn, ba ẩn. 1.5. Bất đẳng thức. 2. Hình học. 2.1. Vectơ. 2.2. Tích vô hướng của hai vectơ.