Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 12 môn Toán lần 2 năm 2023 2024 trường THPT chuyên Thái Bình

Nội dung Đề khảo sát lớp 12 môn Toán lần 2 năm 2023 2024 trường THPT chuyên Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2023 – 2024 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi có đáp án trắc nghiệm mã đề 126 – 234 – 315 – 468. Trích dẫn Đề khảo sát Toán lớp 12 lần 2 năm 2023 – 2024 trường THPT chuyên Thái Bình : + Một người muốn làm một cái thùng tôn dạng khối hộp chữ nhật không nắp có thể tích bằng 3 288 dm. Đáy thùng là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá tôn làm thùng là 500000 đồng/2 m. Nếu người đó biết xác định các kích thước của thùng hợp lí thì chi phí cho việc mua tôn thấp nhất. Hỏi người đó trả chi phí thấp nhất để mua tôn làm thùng đó là bao nhiêu? (giả sử các mép tôn hàn không đáng kể). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2, SA = 2 và SA vuông góc với mặt phẳng đáy (ABCD). Gọi M, N là hai điểm thay đổi trên hai cạnh AB, AD sao cho mặt phẳng (SMC) vuông góc với mặt phẳng (SNC). Tính tổng 2 2 1 1 T AN AM khi thể tích khối chóp S.AMCN đạt giá trị lớn nhất. + Một tấm đề can hình chữ nhật được cuộn tròn lại theo chiều dài tạo thành một khối trụ có đường kính 50 (cm). Người ta trải ra 250 vòng để cắt chữ và in tranh cổ động, phần còn lại là một khối trụ có đường kính 45 (cm). Hỏi phần đã trải ra dài bao nhiêu mét (làm tròn đến hàng đơn vị)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Đồng Nai
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Đồng Nai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 23 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Đồng Nai : + Cho f(x) là một đa thức bậc 100, với các hệ số nguyên, trong đó hệ số cao nhất bằng 1. Hỏi f(x) có nhiều nhất là bao nhiêu nghiệm nằm trong khoảng (0;1)? + Chứng minh rằng với mọi số nguyên dương k, tồn tại số nguyên dương n để n^n + 2023 chia hết cho 2^k. + Cho các số nguyên dương m, n sao cho m là một số lẻ và n không chia hết cho 3. Chứng minh rằng bảng m x n không thể được phủ khít bằng cách sử dụng các hình vuông 2 x 2 và 3 x 3.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra trong hai ngày: 22/09/2022 (vòng 1) và 23/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho trước a, b thuộc N* thỏa mãn a2 + b2 là tích của các số nguyên tố phân biệt và mỗi số nguyên tố đó đều có dạng 8k -3 với k thuộc N*. a) Giả sử tồn tại p = 8l – 3 (l thuộc N*) là một ước nguyên tố của a4 + b4. Chứng minh rằng p là ước của cả a và b. b) Tìm tất cả các cặp (m; n) với m,n thuộc Z mà am + bn và an – bm là các số chính phương. + Với mỗi cặp số nguyên dương (m; n), giả sử ban đầu có m + n hộp được đánh số từ 1 đến m + n, trong đó m hộp đầu tiên mỗi hộp chứa 1 bi đen và n hộp còn lại mỗi hộp chứa 1 bi trắng. Trong mỗi bước, ta được quyền chuyển một bi đen từ hộp i sang hộp i + 1 và một bi trắng từ hộp j sang hộp j – 1 với điều kiện i – j là một số chẵn. Ở đây giả sử rằng mỗi hộp đều đủ lớn để có thể chứa toàn bộ số bi. Cặp số (m; n) được gọi là tốt nếu sau hữu hạn bước chuyển thì n hộp đầu tiên mỗi hộp chứa 1 bi trắng và m hộp còn lại mỗi hộp chứa 1 bi đen. Nếu trái lại thì ta nói (m; n) là cặp xấu. 1) Chứng minh rằng cặp (1; 2021) là cặp xấu. b) Tìm số cặp số nguyên dương (m; n) tốt trong mỗi trường hợp một m + n = 2022 và m + n = 2023. + An và Bình đến cửa hàng mua kẹo. Trong cửa hàng có các túi kẹo loại 1 chiếc, 2 chiếc, 4 chiếc … 2^30 chiếc. Mỗi loại có nhiều túi. Mỗi bạn chọn mua một số túi ở nhiều loại và mỗi loại có thể mua nhiều túi. a) Số túi ít nhất An cần phải mua để có đúng 1000 chiếc kẹo là bao nhiêu? b) Có bao nhiêu cách chọn 5 túi kẹo đôi một khác loại sao cho tổng số chiếc kẹo được chọn không vượt quá 2023 và nếu túi loại 2^n được chọn (n thuộc N và n =< 29) thì túi loại 2^n+1 không được chọn? c) Giả sử sau khi mua, An và Bình lần lượt có n và n + 1 (n thuộc N và 0 =< n =< 2023) chiếc kẹo, đồng thời An có nhiều hơn Bình 7 túi kẹo. Có bao nhiêu giá trị n thỏa mãn các điều kiện trên, biết An và Bình luôn mua ít túi nhất có thể?
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia lớp 12 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho x, y là các số nguyên dương lớn hơn 2 và A = y(4y + 5/x) – 1/y + x. Biết rằng A là một số nguyên dương. Chứng minh rằng A là số chính phương. + Cho a, b, c, m là các số nguyên dương và a, b, c không vượt quá n. Giả sử phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt x1, x2 thoả mãn |x1 – x2| < 1/n. Chứng minh rằng nó có ít nhất hai ước số là số nguyên tố. + Cho tam giác nhọn không cân ABC, (I) là đường tròn nội tiếp. Gọi D, E, F theo thứ tự là tiếp điểm của (I) và  BC, CA, AB. Gọi A’, B’, C’ lần lượt là điểm đối xứng của A, B, C qua EF, FD, DE. K là trực tâm của tam giác DEF. a) Chứng minh rằng các tam giác DEF, A’B’C’ có diện tích bằng nhau. b) Giả sử ba đường thẳng DA’, EB’, FC’ đôi một cắt nhau tạo thành tam giác XYZ. Chứng minh rằng trực tâm của tam giác XYZ là trung điểm của KI.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi môn Toán THPT cấp Quốc gia năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra trong 02 ngày: 21/09/2022 (vòng 1) và 22/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Tìm tất cả các cặp số nguyên không âm (x; y) sao cho x2 + 3y và y2 + 3x đều là các số chính phương. + Số nguyên dương n được gọi là “hợp lý” nếu mọi số chính phương khi chia cho n đều được số dư là số chính phương. a) Chứng minh n = 16 là số “hợp lý”. b) Chứng minh rằng mọi số “hợp lý” đều không vượt quá 500. + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Hai điểm E, F lần lượt thuộc cạnh CA, AB (E và F không thuộc {A;B;C} sao cho EF song song với BC. Gọi D là điểm đối xứng với A qua EF. a) Đường thẳng đi qua A song song với BC cắt đường tròn (O) tại H (H khác A). Chứng minh ba đường thẳng DH, BE, CF đồng quy. b) Gọi I là giao điểm của BE và CF. Đường tròn đi qua E, F tiếp xúc với đường tròn (O) tại điểm L (L khác A). Chứng minh ba điểm L, D, I thẳng hàng.