Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 9 năm 2018 - 2019 phòng GDĐT Thị Xã Phú Mỹ - Bà Rịa - Vũng Tàu

THCS. giới thiệu đến toàn thể các em học sinh khối lớp 9 đề thi HK1 Toán 9 năm 2018 – 2019 phòng GD&ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu, đề được biên soạn theo hình thức tự luận, gồm 1 trang với 5 bài toán, thời gian làm bài dành cho học sinh là 90 phút, kỳ thi nhằm đánh giá lại tất cả những kiến thức Toán 9 học sinh đã được truyền đạt trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HK1 Toán 9 năm 2018 – 2019 phòng GD&ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu : + Cho đường tròn tâm O đường kính AB và C là một điểm trên đường tròn (C khác A và B). Kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của AC; OI cắt tiếp tuyến tại A của (O) tại M; MB cắt CH tại K. a) Chứng minh: OI ⊥ AC và tam giác ABC vuông tại C. b) Chứng minh MC là tiếp tuyến của (O). c) Chứng minh K là trung điểm của CH. [ads] + Cho tam giác ABC vuông tại A có đường cao AH (H ∈ BC). Tính AH, AC và sinC biết BH = 9cm, CH = 16cm. + Trong mặt phẳng tọa độ Oxy cho hai đường thẳng (d1): y = 2x + 2 và (d2): y = -1/2.x – 2. Gọi C là giao điểm của (d1), (d2). Hai đường thẳng (d1) và (d2) cắt trục Oy theo thứ tự tại D và E. a) Vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy. b) Tìm tọa độ các điểm C, D, E. c) Tính diện tích tam giác CDE.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Gò Vấp - TP. HCM
Đề thi học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Gò Vấp – TP. HCM gồm 7 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : Cho đường tròn (O; R). Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC của (O) (B và C là các tiếp điểm); OA cắt BC tại H. a) Chứng minh OA là đường trung trực của đoạn BC và OH.OA = R^2 b) Vẽ đường kính CD của (O), AD cắt (O) tại điểm E khác D, BC cắt DE tại K, EC cắt OA tại V, tia KV cắt AC tại M. Chứng minh CE ⊥ AK và V là trung điểm của đoạn KM. c) Vẽ đường thẳng OT vuông góc với DE tại T, OT cắt đường thẳng BC tại Q. Chứng minh QD là tiếp tuyến của đường tròn (O). Giải: a) OA là đường trung trực của đoạn BC Ta có AB = AC ( tính chất 2 tiếp tuyến cắt nhau) OB = OC = R Vậy OA là đường trung trực của BC ⇒ OA ⊥ BC tại H và HB = HC Chứng minh OH.OA = R^2 AB , AC là tiếp tuyến với (O) tại B và C ⇒ AB ⊥ OB và AC ⊥ OB Xét △OAB vuông tại B , BH⊥OA , ta có OB^2 = OH.OA =R^2 (hệ thức lượng trong tam giác vuông) [ads] b) CE⊥ AKV là trung điểm của đoạn KM Ta có △CDE nội tiếp đường tròn (O) có cạnh CD là đường kính Vậy △CDE vuông tại E ⇒ CE ⊥ DE hay CE ⊥ AK Chứng minh V là trung điểm của đoạn KM Do CE ⊥ AK và AH ⊥ CK (vì OA ⊥ BC) ⇒ V là trực tâm của △ACK ⇒ KV ⊥ AC tại M và CD ⊥ AC ⇒ KM//CD KV//OD ⇒ KV/OD = AV/AO (hệ quả định lí Talet) VM//OC ⇒ VM/OC = AV/AO (hệ quả định lí Talet) ⇒ KV/OD = VM/OC ⇒ KV = VM (vì OD = OC = R) Vậy V là trung điểm của KM c) QD là tiếp tuyến của đường tròn (O) Xét △OBQ vuông tại H và △OTA vuông tại T, ta có: ∠O chung ⇒ △OBQ ∽ △OTA (g.g) ⇒ OT.OQ = OH.OA Vì OD^2 = OB^2 = OH.OA ⇒ OD^2 = OT.OQ ⇒ △ODQ ∽ △OTD (c.g.c) ⇒ ∠ODQ = ∠OTD = 90° ⇒ DQ ⊥ OD Mà OD = R ⇒ QD là tiếp tuyến với (O) tại D
Đề thi HKI Toán 9 năm học 2017 - 2018 phòng GD và ĐT Nam Từ Liêm - Hà Nội
Đề thi HKI Toán 9 năm học 2017 – 2018 phòng GD và ĐT Nam Từ Liêm – Hà Nội gồm 4 câu hỏi trắc nghiệm (chiếm 1 điểm) và 5 bài toán tự luận (chiếm 9 điểm), thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 9 : + Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M. a) Cho biết bán kính R = 5cm, OM = 3cm. Tính độ dài dây EH. b) Chứng minh: AH là tiếp tuyến của đường tròn (O). c) Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm). Chứng minh: 3 điểm E, O, F thẳng hàng và BF.AE = R^2. d) Trên tia HB lấy điểm I (I khác B), qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh: AE = DQ. [ads] + Cho hàm số y = (m – 4)x + 4 có đồ thị là đường thẳng d (m khác 4) a) Tìm m để đồ thị hàm số đi qua A(1;6). b) Vẽ đồ thị hàm số với m vừa tìm được ở câu a. Tính góc tạo bởi đồ thị hàm số vừa vẽ với trục Ox (làm tròn đến phút). c) Tìm m để đường thẳng (d) song song với đường thẳng (d1): y = (m – m^2)x + m + 2 + Cho tam giác MNP vuông tại M, đường cao MH. Chọn hệ thức sai: A. MH^2 = HN.HB B. MP^2 = NH.HP C. MH.NP = MN.MP D. 1/MN^2 + 1/MP^2 = 1/MH^2
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Bảo - Hải Phòng
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Bảo – Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng đi qua O cắt đường thẳng (d) ở M và cắt đường thẳng (d’) ở P. Từ O kẻ một tia vuông góc với MP và cắt đường thẳng (d’) ở N. Kẻ OI ⊥ MN tại I. a) Chứng minh: OM = OP và ∆NMP cân b) Chứng minh: OI = R và MN là tiếp tuyến của đường tròn (O). c) TínhAIB d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất? [ads] + Cho hàm số y = (m – 2)x + 3 (d) a) Xác định m biết (d) đi qua A(1; -1). Vẽ đồ thị hàm số với m vừa tìm được. b) Viết phương trình đường thẳng đi qua điểm B(-2; 2) và song song với đường thẳng vừa tìm được ở câu a. + Cho a, b > 0; Chứng minh rằng: 3(b^2 + 2a^2) ≥ (b + 2a)^2
Đề thi HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Cầu Giấy - Hà Nội
Đề thi HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Cầu Giấy – Hà Nội gồm 2 trang với 2 phần: + Phần 1. Trắc nghiệm khách quan: Bao gồm 8 câu hỏi, chiếm 20% số điểm. + Phần 2. Tự luận: Bao gồm 4 câu hỏi, chiếm 80% số điểm Kỳ thi diễn ra vào ngày 15/12/2017 [ads]