Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 9 đợt 2 năm 2018 - 2019 phòng GDĐT Kim Thành - Hải Dương

Đề KSCL Toán 9 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương là đề kiểm tra chất lượng môn Toán lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đề nhằm giúp giáo viên bộ môn Toán nắm rõ chất lượng học tập môn Toán của học sinh lớp 9 tại trường, để có những điều chỉnh phù hợp trong quá trình dạy và học nhằm nâng cao chất lượng cho giai đoạn nữa sau học kỳ 2 của năm học 2018 – 2019. Đề KSCL Toán 9 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán tự luận, học sinh có 120 phút để làm bài thi, đề thi không quá khó và các em hoàn toàn có thể đạt điểm số 9 – 9 nếu nắm vững các kiến thức Toán 9 trong sách giáo khoa. [ads] Trích dẫn đề KSCL Toán 9 đợt 2 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương : + Cho hàm số y = (2m + 3)x/3 – m^2 + 3. Tìm m để đồ thị hàm số cắt đồ thị hàm số y = 3x – 6 tại một điểm trên trục tung. + Giải bài toán bằng cách lập hệ phương trình hoặc phương trình: Một mảnh vườn hình chữ nhật có chu vi là 64m. Nếu tăng chiều rộng thêm 2m còn giảm chiều dài đi 3m thì diện tích mảnh vườn giảm 7m2. Tính diện tích của mảnh vườn hình chữ nhật lúc đầu. + Cho hai đường tròn tâm (O1) và đường tròn tâm (O2) tiếp xúc ngoài tại A. Tiếp tuyến chung ngoài BC của hai đường tròn (B thuộc (O1); C thuộc (O2)) cắt tiếp tuyến chung tại A ở I. a. Tính góc O1IO2. b. Chứng minh BC^2 = 4.O1A.O2C và tam giác ABC vuông tại A. c. Kéo dài BA cắt (O2) tại giao điểm thứ hai là D, kéo dài CA cắt (O1) tại giao điểm thứ hai là E. Chứng minh S_ABC = S_ADE.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa
Nội dung Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa Bản PDF - Nội dung bài viết Chia sẻ Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa Chia sẻ Đề KSCL Toán vào 10 lần 1 năm 2023 2024 trường THPT Đào Duy Anh Thanh Hóa Chào đón các thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin được giới thiệu đến các bạn đề thi khảo sát chất lượng môn Toán lớp 9, ôn thi tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 tại trường THPT Đào Duy Anh, Thanh Hóa. Đề thi này sẽ diễn ra vào ngày 19 tháng 03 năm 2023. Dưới đây là một số câu hỏi trong Đề KSCL Toán vào 10 lần 1 năm 2023 – 2024 trường THPT Đào Duy Anh – Thanh Hóa: 1. Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng (d): y = -x + n – 1 và (d'): y = (m2 − 3)x + m. Tìm m và n để (d) vuông góc với (d'), đồng thời (d) cắt (d') tại điểm A(3;1). 2. Cho phương trình x^2 − 2(m + 1)x + m^2 + 1 = 0 với m là tham số. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 (x1 < x2) thoả mãn (2x2 − 3)2 – (2x1 − 3)2 = 32m – 16. 3. Cho đường tròn (O;R), đường kính AB cố định, điểm I nằm giữa O và A sao cho AI = 1/3.AO. Kẻ dây cung MN vuông góc với AB tại I, gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E. a. Chứng minh tứ giác EIBC nội tiếp. b. Chứng minh AM^2 = AE.AC. c. Tìm bán kính đường tròn ngoại tiếp tam giác MCE khi NK nhỏ nhất, với K là tâm đường tròn ngoại tiếp tam giác MCE. Hy vọng rằng việc ôn tập và giải các bài tập từ Đề KSCL Toán vào 10 lần 1 năm 2023 – 2024 sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và đạt kết quả cao!
Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh
Nội dung Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT thành phố Bắc Ninh Xin chào quý thầy cô và các em học sinh lớp 9! Để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 của phòng Giáo dục và Đào tạo thành phố Bắc Ninh, Sytu xin giới thiệu đến mọi người đề khảo sát chất lượng môn Toán. Đề thi sẽ bao gồm 40% câu hỏi trắc nghiệm (32 câu – 50 phút) và 60% câu hỏi tự luận (04 câu – 70 phút). Đề thi sẽ có đáp án và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả. Trích dẫn đề KSCL Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh: 1. Theo kế hoạch được sắp xếp, phòng họp chỉ có thể chứa 120 người. Tuy nhiên, đến buổi họp, lại có 160 người tham gia. Vì vậy, phải kê thêm 2 dãy ghế và mỗi dãy cần thêm một ghế nữa thì mới đủ chỗ. Hãy tính số dãy ghế ban đầu được sắp xếp. Biết rằng số dãy ghế ban đầu nhiều hơn 20 dãy và số ghế trên mỗi dãy bằng nhau. 2. Cho đường tròn có tâm O và đường kính AB. M là điểm chính giữa của cung AB và K là một điểm bất kỳ trên cung nhỏ BM (K khác B và M). Vẽ KP vuông góc với AB tại P và MH vuông góc với AK tại H. a) Chứng minh 4 điểm A, O, H, M thẳng hàng. b) Chứng minh rằng OH là tia phân giác của góc MOK. c) Xác định vị trí của điểm K trên cung BM sao cho tỉ số diện tích tam giác PKO và tam giác MAO là 1:2. 3. Khẳng định nào sau đây là đúng? A. Đường tròn là hình không có trục đối xứng. B. Đường tròn là hình có vô số trục đối xứng. C. Đường tròn là hình có hai trục đối xứng. D. Đường tròn là hình có một trục đối xứng. Hy vọng đề KSCL Toán này sẽ giúp các em học sinh lớp 9 ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em thành công!
Đề KSCL Toán thi vào 10 năm 2023 2024 trường THPT Quảng Xương 4 Thanh Hoá
Nội dung Đề KSCL Toán thi vào 10 năm 2023 2024 trường THPT Quảng Xương 4 Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán thi vào 10 năm 2023-2024 trường THPT Quảng Xương 4 Thanh Hoá Đề KSCL Toán thi vào 10 năm 2023-2024 trường THPT Quảng Xương 4 Thanh Hoá Sytu xin được giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán thi tuyển sinh vào lớp 10 THPT năm học 2023-2024 trường THPT Quảng Xương 4, tỉnh Thanh Hoá. Đề thi bao gồm đáp án và hướng dẫn chấm điểm. Đề thi bắt đầu với câu hỏi về hệ toạ độ Oxy, yêu cầu tìm giá trị của a sao cho parabol y=ax đi qua điểm A(2;2). Sau đó, học sinh cần xác định tọa độ điểm B là giao điểm thứ hai của đường thẳng và parabol đã cho. Đến câu hỏi tiếp theo, học sinh sẽ phải giải phương trình bậc hai khi m=3 và tìm giá trị của m sao cho phương trình có 2 nghiệm phân biệt và thỏa mãn điều kiện đã đề ra. Cuối cùng, học sinh sẽ bắt đầu phần tứ giác và đường tròn. Họ sẽ phải chứng minh các tính chất của các tứ giác và đường tròn, và tìm diện tích lớn nhất của tứ giác cho trước. Đề thi này không chỉ đánh giá kiến thức mà còn kỹ năng giải quyết vấn đề và logic của học sinh. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới.
Đề KSCL Toán ôn thi vào 10 năm 2023 2024 phòng GD ĐT Thiệu Hóa Thanh Hóa
Nội dung Đề KSCL Toán ôn thi vào 10 năm 2023 2024 phòng GD ĐT Thiệu Hóa Thanh Hóa Bản PDF - Nội dung bài viết Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GD&ĐT Thiệu Hóa - Thanh Hóa Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GD&ĐT Thiệu Hóa - Thanh Hóa Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2023 - 2024 của phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 20 tháng 05 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn từ Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GD&ĐT Thiệu Hóa - Thanh Hóa: - Cho đường thẳng (d): y = ax + b. Tìm a, b biết (d) cắt trục hoành tại điểm có hoành độ bằng 3 và (d) song song với đường thẳng y = 2x + 6. - Cho phương trình 2x^2 - mx + m - 1 = 3x^2 - 3. Tìm m để phương trình đã cho có hai nghiệm phân biệt 1 < x < 2 thỏa mãn 3x^2 - 12x - 13. - Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2/3 AI = OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE = AC, AI // IB, AI và MA là tiếp tuyến đường tròn ngoại tiếp tam giác MEC. c) Xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất. Đề thi đầy thách thức và phong phú sẽ giúp các em học sinh lớp 9 ôn tập hiệu quả cho kỳ thi vào lớp 10. File WORD đề thi được cung cấp để quý thầy, cô giáo và các em học sinh dễ dàng tiếp cận và tham gia ôn thi.