Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối kì 1 Toán 11 năm 2020 - 2021 trường THPT Tân Túc - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối kì 1 Toán 11 năm học 2020 – 2021 trường THPT Tân Túc, thành phố Hồ Chí Minh; đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra cuối kì 1 Toán 11 năm 2020 – 2021 trường THPT Tân Túc – TP HCM : + Một giáo viên có 10 cuốn sách đôi một khác nhau, trong đó có 5 cuốn sách văn học, 3 cuốn sách toán và 2 cuốn sách tiếng anh. Hỏi có bao nhiêu cách giáo viên đó lấy ngẫu nhiên ra mỗi loại sách 2 cuốn sách tặng cho 6 học sinh giỏi, mỗi em học sinh một cuốn sách? + Gọi S là tập hợp tất cả các số tự nhiên có 3 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1,2,3,4,5,6,7}. Chọn ngẫu nhiên một số thuộc S, tính xác suất để số đó không có hai chữ số liên tiếp nào cùng lẻ. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M và N lần lượt là trung điểm các cạnh SC và DC. a) Tìm giao tuyến hai mặt phẳng (SAD) và (SBC). b) Chứng minh mặt phẳng (OMN) song song với mặt phẳng (SAD). c) Gọi P là giao điểm của đường thẳng SB và mặt phẳng (OMN). Chứng minh đường thẳng OP song song với mặt phẳng (SCD).

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Bà Điểm - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Bà Điểm, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Bà Điểm – TP HCM : + Bạn Danh viết ngẫu nhiên lên bảng 4 số tự nhiên khác nhau thuộc [1;19]. Tính xác suất để bốn số được viết ra có tổng là một số chẵn. + Một cấp số cộng có 10 số hạng. Biết rằng tổng số hạng đầu và số hạng cuối bằng 30, tổng số hạng thứ ba và thứ sáu bằng 35. Số hạng thứ bảy của cấp số cộng là bao nhiêu. + Cho hình chóp S.ABC, gọi M, N lần lượt là trọng tâm của tam giác SAB, tam giác SBC. Gọi I là trung điểm của AC. a) Xác định giao tuyến của (BMN) và (SAC). b) Tìm giao điểm J của đường thẳng SB và mặt phẳng (IMN).
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THCS & THPT Trí Đức, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THCS & THPT Trí Đức – TP HCM : + Trong một hộp có 4 bi xanh khác nhau, 6 bi đỏ khác nhau, 8 bi vàng khác nhau. Có bao nhiêu cách chọn ra 4 bi gồm 2 bi xanh, 1 bi đỏ, 1 bi vàng? + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. + Một xưởng may áo khoác tháng đầu tiên may được 365 chiếc áo. Nhờ không ngừng cải tiến kỹ thuật, gia tăng sản xuất nên kể từ tháng thứ hai, mỗi tháng đều sản xuất được nhiều hơn tháng kề trước đó 50 chiếc. Tính tổng số áo khoác mà xưởng may được sau 36 tháng hoạt động?
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Trần Văn Giàu - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Trần Văn Giàu, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Trần Văn Giàu – TP HCM : + Trên một kệ sách có 8 cuốn sách Toán, 7 cuốn sách Văn và 5 cuốn sách tiếng Anh. Chọn ngẫu nhiên 5 cuốn sách trên kệ. Tính xác suất để 5 cuốn sách được chọn: a) Cùng một loại sách. b) Có đủ ba loại sách và số sách Toán có ít nhất là 2 cuốn. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm các cạnh AB và CD. a/ Tìm giao tuyến của (SMN) với (SAC). b/ Gọi P là trung điểm cạnh SA. Chứng minh (SBC) song song (MNP). c/ Gọi G1, G2 lần lượt là trọng tâm của ΔABC và ΔSBC. Chứng minh: G1G2 // (SAB). + Cho tập hợp A = {0; 1; 2; 3; 4; 5; 6; 7}, có bao nhiêu số tự nhiên không chia hết cho 2 có 5 chữ số khác nhau lập từ tập A?
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Tây Thạnh - TP HCM
Kỳ thi cuối học kì 1 môn Toán 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán 11 sắp tới, chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Tây Thạnh, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Tây Thạnh – TP HCM : + Hai bạn Phương và Như đang cùng làm bài tập Toán. Sau một lúc, hai bạn trao đổi kết quả với nhau: Bạn Phương nói: “Tớ tìm được tất cả 448 số tự nhiên có bốn chữ số khác nhau chia hết cho 5”. Bạn Như lại bảo: “Đáp số của mình là 504 số”. Em có đồng ý với đáp số của bạn nào không? Bằng lập luận toán học, hãy giải thích tại sao? + Đoàn trường THPT Tây Thạnh đã trao danh hiệu “Học sinh 3 tốt” cho học sinh 3 khối với số lượng như sau: Khối 12: 4 nam, 2 nữ; Khối 11: 3 nam, 3 nữ; Khối 10: 2 nam, 2 nữ. Hỏi có bao nhiêu cách chọn 3 học sinh đại diện dự lễ tuyên dương phong trào “Học sinh 3 tốt” cấp Quận sao cho có cả nam lẫn nữ và có học sinh của 3 khối lớp. + Có 90 viên bi được đánh số từ 1 đến 90. Một người lấy ngẫu nhiên không hoàn lại lần lượt từng viên bi. Tính xác suất để sau ba lần lấy, người này có ít nhất một viên bi có ghi hai chữ số giống nhau.