Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân loại và phương pháp giải bài tập bất đẳng thức - bất phương trình

Tài liệu gồm 174 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập bất đẳng thức – bất phương trình, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 4 (Toán 10). BÀI 1 . BẤT ĐẲNG THỨC. Dạng 1: Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất. + Loại 1: Biến đổi tương đương về bất đẳng thức đúng. + Loại 2: Xuất phát từ một BĐT đúng ta biến đổi đến BĐT cần chứng minh. Dạng 2: Sử dụng bất đẳng thức Cauchy (Côsi) để chứng minh bất đẳng thức và tìm giá tri lớn nhất, nhỏ nhất. + Loại 1: Vận dụng trực tiếp bất đẳng thức Côsi. + Loại 2: Kĩ thuật tách, thêm bớt, ghép cặp. + Loại 3: Kĩ thuật tham số hóa. + Loại 4: Kĩ thuật Côsi ngược dấu. Dạng 3: Đặt ẩn phụ trong bất đẳng thức. Dạng 4: Sử dụng bất đẳng thức phụ. BÀI 2 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Dạng 1. Điều kiện xác định của bất phương trình. Dạng 2. Cặp bất phương trình tương đương. Dạng 3. Bất phương trình bậc nhất một ẩn. Dạng 4. Hệ bất phương trình bậc nhất một ẩn. BÀI 3 . DẤU CỦA NHỊ THỨC BẬC NHẤT. Dạng 1. Xét dấu nhị thức bậc nhất. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Bất phương trình chứa trị tuyệt đối. BÀI 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1. Bất phương trình bậc nhất hai ẩn. Dạng 2. Hệ bất phương trình bậc nhất hai ẩn. Dạng 3. Bài toán tối ưu. BÀI 5 . DẤU CỦA TAM THỨC BẬC HAI. Dạng 1. Xét dấu của tam thức bậc hai áp dụng vào giải bất phương trình bậc hai đơn giản. Dạng 2. Ứng dụng về dấu của tam thức bậc hai để giải phương trình tích. Dạng 3. Ứng dụng về dấu của tam thức bậc hai để giải phương trình chứa ẩn ở mẫu. Dạng 4. Ứng dụng về dấu của tam thức bậc hai để tìm tập xác định của hàm số. Dạng 5. Tìm điều kiện của tham số để phương trình bậc hai vô nghiệm – có nghiệm – có hai nghiệm phân biệt. Dạng 6. Tìm điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước. Dạng 7. Tìm điều kiện của tham số để bất phương trình vô nghiệm – có nghiệm – nghiệm đúng. Dạng 8. Hệ bất phương trình bậc hai.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương trình, bất phương trình và hệ phương trình đại số
Tài liệu gồm 250 trang trình bày đầy đủ các dạng toán phương trình, bất phương trình và hệ phương trình với các bài toán được giải chi tiết. Nội dung tài liệu : Phần 1 – Phương trình & bất phương trình A – Phương trình – bất phương trình cơ bản 1/ Phương trình – bất phương trình căn thức cơ bản 2/ Phương trình – bất phương trình chứa dấu giá trị tuyệt đối 3/ Một số phương trình – bất phương trình cơ bản thường gặp khác B – Giải phương trình & bất phương trình bằng cách đưa về tích số hoặc tổng hai số không âm 1/ Sử dụng biến đổi đẳng thức cơ bản để đưa về phương trình tích 2/ biến đổi về tổng hai số không âm 3/ Sử dụng nhân liên hợp 4/ Đặt ẩn phụ không hoàn toàn C – Giải phương trình & bất phương trình bằng đặt ẩn số phụ 1/ Đặt một ẩn phụ 2/ Đặt hai ẩn phụ [ads] D – Giải phương trình & bất phương trình bằng bất đẳng thức và hình học 1/ Giải phương trình và bất phương trình bằng bất đẳng thức 2/ Giải phương trình và bất phương trình bằng cách ứng dụng của hình học E – Giải phương trình & bất phương trình bằng phương pháp lượng giác hóa F – Giải phương trình & bất phương trình bằng phương pháp sử dụng tính đơn điệu của hàm số G – Bài toán chứa tham số trong phương trình & bất phương trình Phần 2 – Hệ phương trình A – Hệ phương trình cơ bản B – Biến đổi một phương trình thành tích & kết hợp phương trình còn lại C – Giải hệ bằng cách đặt ẩn phụ đưa về hệ cơ bản D – Giải hệ bằng bất đẳng thức E – Giải hệ bằng lượng giác hóa & số phức hóa F – Giải hệ bằng tính đơn điệu của hàm số G – Bài toán chứa tham số trong hệ phương trình
Các dạng Bất phương trình vô tỉ và cách giải
Tài liệu gồm 17 trang trình bày các dạng bất phương trình vô tỉ và hướng dẫn phương pháp giải các bất phương trình vô tỉ đó.
Tuyển tập 30 bài toán bất phương trình vô tỉ - Nguyễn Minh Tiến
Tài liệu gồm 18 trang tuyển chọn 30 bài toán bất phương trình vô tỉ có lời giải chi tiết, tài liệu được biên soạn bởi tác giả Nguyễn Minh Tiến.
Tuyển tập 100 bài toán Hệ phương trình
Tài liệu gồm 52 trang tuyển chọn và giải chi tiết 100 bài toán hệ phương trình, các bài toán hệ phương trình được tuyển chọn gồm nhiều dạng bài khác nhau, trong mỗi bài toán lại được giải bằng nhiều phương pháp, cách giải khác nhau nhằm giúp học sinh tiếp cận được nhiều dạng toán về hệ phương trình và có nhiều hướng tiếp cận khi giải bài toán này.