Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD và ĐT Đắk Lắk

Ngày 07 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020, nhằm tuyển chọn các em học sinh lớp 9 đáp ứng yêu cầu học lực môn Toán, vào học tại các trường THPT trực thuộc sở GD&ĐT tỉnh Đắk Lắk, để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD và ĐT Đắk Lắk bao gồm 05 bài toán, đề thi gồm có 01 trang, đề được biên soạn theo dạng tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD và ĐT Đắk Lắk : + Một cốc nước dạng hình trụ có chiều cao 12cm, bán kính đáy 2cm, lượng nước trong cốc cao 8cm. Người ta thả vào cốc nước 6 viên bi hình cầu có cùng bán kính 1cm và ngập hoàn toàn trong nước làm nước trong cốc dâng lên. Hỏi sau khi thả 6 viên bi vào thì mực nước trong cốc cách miệng cốc bao nhiêu xentimét? (giả sử độ dày của cốc là không đáng kể). + Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y = -x + √2/2. Gọi A, B lần lượt là giao điểm của d với trục hoành và trục tung; H là trung điểm của AB. Tính độ dài đoạn thẳng OH (đơn vị đo trên các trục tọa độ là xentimét). + Cho đường tròn (O) hai đường kính AB, CD vuông góc với nhau. Điểm M thuộc cung nhỏ BD sao cho góc BOM = 30 độ. Gọi N là giao điểm của CM và OB. Tiếp tuyến tại M của đường tròn (O) cắt OB, OD kéo dài lần lượt tại E và F. Đường thẳng qua N và vuông góc với AB cắt EF tại P. 1) Chứng minh tứ giác ONMP là tứ giác nội tiếp. 2) Chứng minh tam giác EMN là tam giác đều. 3) Chứng minh: CN = OP. 4) Gọi H là trục tâm tam giác AEF. Hỏi ba điểm A, H, P có thẳng hàng không? Vì sao?

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A) bao gồm 25 bài toán theo hình thức điền kết quả. Đây là một bài thi quan trọng để đánh giá kiến thức và kỹ năng của học sinh trong môn Toán. Các bài toán trong đề thi có thể đa dạng về đề tài và độ khó, từ đơn giản đến phức tạp, đề cao khả năng tư duy logic và giải quyết vấn đề của thí sinh. Qua đề thi này, học sinh có cơ hội thể hiện kiến thức và năng lực của mình, đồng thời chuẩn bị tốt cho việc học tập và phát triển sau này.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Đề thi tuyển sinh lớp 10 năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) bao gồm 5 bài toán tự luận với lời giải chi tiết. Dưới đây là một số bài toán trong đề: 1. Trong mặt phẳng tọa độ Oxy, có parabol 2 (P): y = x^2 và đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện |x1 - x2| >= 2. 2. Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2. Đề thi tuyển sinh mang đến những bài toán thú vị, hấp dẫn và đòi hỏi sự tỉ mỉ, logic trong suy luận. Chúc các em thí sinh thành công trong kỳ thi sắp tới!
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) là bài thi đầy thách thức với nhiều bài toán khó, yêu cầu sự tư duy logic và khả năng suy luận cao. Trong đề thi này, có 5 bài toán tự luận, mỗi bài đều có lời giải chi tiết để giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một trong những bài toán trong đề thi là bài toán về parabol và đường thẳng, đặt ra các điều kiện và yêu cầu tìm ra các giá trị của các hằng số sao cho tam giác tạo bởi các điểm cắt đường thẳng và parabol có diện tích đã cho. Bài toán này đòi hỏi sự tinh tế trong việc xử lý các định lý và phương pháp tính toán. Bài toán khác đưa ra một định lý về tổ hợp các số nguyên không âm để tổng các tích và tổng các số đó đạt giá trị nhất định. Học sinh cần phải sử dụng đến kiến thức về tổ hợp và tìm ra cách giải phù hợp để hoàn thành bài toán. Ngoài ra, đề thi còn có bài toán về hình vuông và việc chứng minh tồn tại tam giác có diện tích không vượt quá một giá trị nhất định. Để giải quyết bài toán này, học sinh cần phải áp dụng kiến thức về hình học và tư duy logic để đưa ra lời giải chính xác. Đề thi tuyển sinh môn Toán của trường THPT chuyên Quốc học - TT Huế (chuyên Tin) không chỉ đánh giá kiến thức mà còn thách thức sự sáng tạo và tư duy của học sinh. Bằng cách học tập và ôn luyện kỹ càng, học sinh sẽ có cơ hội vượt qua thử thách này và chinh phục bài thi một cách xuất sắc.
Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc
Nội dung Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc Bản PDF - Nội dung bài viết Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách bao gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên từ năm 2000 đến nay, với lời giải chi tiết. Đây là tài liệu hữu ích giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào các trường chuyên trên toàn quốc. Các đề thi được tổng hợp từ nhiều năm, giúp học sinh ôn tập và nắm vững kiến thức, kỹ năng cần thiết để đạt kết quả cao trong kỳ thi quan trọng này. Sách cung cấp một cách tiếp cận cụ thể, dễ hiểu và chi tiết, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.