Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT chuyên Hà Nội Amsterdam Bản PDF Ngày … tháng 06 năm 2020, trường THPT chuyên Hà Nội – Amsterdam tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 (HK2) năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam gồm 06 trang với 50 câu trắc nghiệm khách quan, thời gian làm bài 90 phút, nội dung đề bao quát toàn bộ chương trình Toán thi tốt nghiệp THPT, đề thi có đáp án và lời giải chi tiết (lời giải được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Toán VD – VDC). Trích dẫn đề thi học kỳ 2 Toán lớp 12 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam : + An có số tiền 1.000.000.000 đồng, dự định gửi tiền tại ngân hàng 9 tháng, lãi suất hàng tháng tại ngân hàng lúc bắt đầu gửi là 0,4%. Lãi gộp vào gốc để tính vào chu kì tiếp theo. Tuy nhiên, khi An gửi được 3 tháng thì do dịch Covid – 19 nên ngân hàng đã giảm lãi suất xuống còn 0,35%/tháng. An gửi tiếp 6 tháng nữa thì rút cả gốc lẫn lãi. Hỏi số tiền thực tế có được, chênh lệch so với dự kiến ban đầu của An gần số nào dưới đây nhất? + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, góc ABC = 60 độ, AA’ = 2a, hình chiếu vuông góc của điểm A trên mặt phẳng (A’B’C’D’) là trọng tâm tam giác A’B’C’. Gọi M là một điểm di động trên cạnh BB’. Khoảng cách từ điểm M đến mặt phẳng (CDD’C’) là? [ads] + Một nhóm nhảy có 3 học sinh lớp 12A, 4 học sinh lớp 12B và 5 học sinh lớp 12C. Chọn ngẫu nhiên 4 học sinh từ nhóm trên để biễu diễn vào ngày bế giảng tại trường THPT chuyên Hà Nội – Amsterdam. Xác suất để trong 4 học sinh được chọn, mỗi lớp A,B, C có ít nhất một học sinh là?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bùi Thị Xuân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Cho elip E có độ dài trục lớn 1 2 A A 10, trục nhỏ 1 2 B B 8 và hai tiêu điểm F1, F2. Diện tích S của hình phẳng giới hạn bởi E và hai đường thẳng đi qua các tiêu điểm, vuông góc với trục lớn (tham khảo hình vẽ) nằm trong khoảng nào dưới đây? + Tính thể tích V của vật thể được giới hạn bởi hai mặt phẳng x a và x b biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x a x b thì được thiết diện có diện tích S x. Khẳng định nào sau đây đúng? + Cho các số phức z, w thỏa mãn z 1 và w i z. Biết rằng tập hợp các điểm biểu diễn số phức w trong mặt phẳng Oxy là một đường tròn. Tính bán kính r của đường tròn đó.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Bình Tân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình phẳng (H) được giới hạn bởi parabol, trục Ox và các đường thẳng x x 1 3. Diện tích của hình phẳng (H) là? + Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm M(3;-5;0) và song song với trục Oy là? + Trong không gian Oxyz, cho ba điểm A(1;-1;1), B(0;1;2), C(1;0;3). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THCS THPT Duy Tân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THCS THPT Duy Tân TP HCM Bản PDF Nhằm kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kì 2, ngày … tháng … năm 2019, trường THCS – THPT Duy Tân, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán lớp 12 năm học 2018 – 2019. Đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THCS – THPT Duy Tân – TP HCM có mã đề 134, đề thi có 03 trang với 30 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THCS – THPT Duy Tân – TP HCM : + Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi parabol y = √3.x^2, trục hoành và hai đường thẳng x = -1, x = 1 quanh trục hoành bằng? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;0;0), B(0;–4;0), C(0;0;4). Viết phương trình mặt phẳng (R) đi qua ba điểm A, B, C. + Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;–1;3) và mặt phẳng (P): x – 2y + z – 1 = 0. Tìm tọa độ hình chiếu vuông góc H của M trên (P). File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Phú Lâm TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THPT Phú Lâm TP HCM Bản PDF Nhằm kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kì 2, ngày … tháng … năm 2019, trường THPT Phú Lâm, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán lớp 12 năm học 2018 – 2019. Đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM có mã đề 985, đề thi có 07 trang với 30 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho điểm I(2;1;-3) và mặt phẳng (P) có phương trình là 3x + y – 2z + 1 = 0. a) Viết phương trình mặt cầu (S) tâm I và tiếp xúc với mặt phẳng (P). b) Tìm tọa độ tiếp điểm của mặt cầu (S) và mặt phẳng (P). [ads] + Cho số phức z = a – bi (a và b thuộc R). Mệnh đề nào sau đây đúng? A. Số phức z có phần thực bằng b, phần ảo bằng a. B. Số phức z có phần thực bằng a, phần ảo bằng b. C. Số phức z có phần thực bằng a, phần ảo bằng -b. D. Số phức z có phần thực bằng a, phần ảo bằng -bi. + Trong không gian Oxyz, cho tam giác ABC có A(1;1;1), B( 1;0;3), C(6;8;-10). Gọi M, N, K lần lượt là hình chiếu của trọng tâm tam giác ABC lên các trục Ox, Oy, Oz. Khi đó, mặt phẳng (MNK) có phương trình là?