Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Nam Đàn Nghệ An

Nội dung Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Nam Đàn Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào sáng thứ Năm ngày 26 tháng 10 năm 2023. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi HSG huyện Toán lớp 9 năm 2023-2024 phòng GD&ĐT Nam Đàn - Nghệ An có các câu hỏi sau: Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh AM.AB = AN.AC. b) Biết AH = h;  = a. Tính độ dài MN theo h và a. c) Trong trường hợp  = 90°, chứng minh HM.HN/HB.HC = MN/BC. Cho 2023 số tự nhiên bất kỳ. Chứng minh rằng trong số các số đó có một số chia hết cho 2023 hoặc có một số số mà tổng của các số ấy chia hết cho 2023. Cho 2 số tự nhiên y > x thỏa mãn (2y - 1)² = (2y - x)(6y + x). Chứng minh 2y - x là số chính phương. Mọi thông tin chi tiết và bài giải, quý thầy cô và các em học sinh có thể tải file WORD theo đường link sau: [Link download].

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thái Nguyên gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thái Nguyên.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 5 (đơn vị diện tích). + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, EF cắt (O) tại P và Q (P thuộc cung nhỏ AB). a) Chứng minh tam giác APQ cân. b) Chứng minh DH.DA = DE.DF. c) Lấy điểm M đối xứng với điểm P qua AB, điểm N đối xứng với điểm Q qua AC. Chứng minh MN // BC. + Cho đường tròn (I) nội tiếp tam giác ABC, (I) tiếp xúc với ba cạnh  BC, CA, AB lần lượt tại các điểm D, E, F. Gọi M là trung điểm của BC. Chứng minh các đường thẳng AM, EF, DI đồng quy.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT tỉnh Trà Vinh
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT tỉnh Trà Vinh gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.