Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh - An Giang

Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6

Nguồn: toanmath.com

Đọc Sách

Đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội Amsterdam
Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 10 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán 10. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán 10 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 10 tự ôn luyện. Trích dẫn đề ôn tập Toán 10 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Cho ba số a, b, c thoả mãn đồng thời a + b – c > 0, a + b – c > 0, a + b – c > 0. Để ba số a, b, c là ba cạnh của một tam giác thì cần thêm đều kiện gì? A. Chỉ cần một trong ba số a, b, c dương. B. Không cần thêm điều kiện gì. C. Cần có cả a, b, c ≥ 0. D. Cần có cả a, b, c > 0. [ads] + Cho phương trình: Ax + By + C = 0 với A^2 + B^2 > 0. Mệnh đề nào sau đây sai? A. B = 0 thì đường thẳng (1) song song hay trùng với y’Oy. B. Điểm M(x0;y0) thuộc đường thẳng (1) khi và chỉ khi Ax0 + By0 + C khác 0. C. (1) là phương trình tổng quát của đường thẳng có vectơ pháp tuyến là n = (A;B). D. A = 0 thì đường thẳng (1) song song hay trùng với x’Ox. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có E, F là hình chiếu vuông góc của B, C lên đường phân giác trong vẽ từ A, gọi K là giao điểm của các đường thẳng FB và CE. Tìm tọa độ điểm A có hoành độ nguyên nằm trên đường thẳng d có phương trình 2x + y + 3 = 0 biết K(-1;-1/2); E(2,-1).
Đề ôn tập Toán 10 tháng 022020 trường THPT chuyên Hà Nội - Amsterdam
Đề khảo sát Toán 10 lần 1 năm 2019 - 2020 trường Thuận Thành 1 - Bắc Ninh
Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2019 – 2020. Đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 716 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 716, 717, 718, 719, 720 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Phủ định mệnh đề “có một học sinh của lớp 10A không thích học môn toán” là? A. Tất cả các bạn lớp 10A đều thích học môn toán. B. Không có bạn nào lớp 10A thích học môn toán. C. Có ít nhất một bạn lớp 10A không thích học môn toán. D. Có nhiều nhất một bạn lớp 10A không thích học môn toán. + Để giữ gìn phong tục tết Việt Nam, gia đình bác Long Thắm có tờ 100.000 đồng muốn đổi thành các tờ 5000 đồng và 10.000 đồng để mừng tuổi cho các cháu? Hỏi hai bác có bao nhiêu cách đổi? [ads] + Lớp học 10A của trường THPT Thuận Thành số 1, tỉnh Bắc Ninh có 30 học sinh. Qua khảo lựa chọn về sở thích các môn thể dục thể thao như đá cầu, bóng đá, bóng chuyền … được biết có 13 bạn thích đá cầu, 14 bạn thích bóng chuyền và 15 bạn thích bóng đá. Có 9 bạn thích cả bóng đá và đá cầu, có 8 bạn thích cả đá cầu và bóng chuyền và 5 bạn chỉ thích bóng đá nhưng không thích bóng chuyền. Hỏi lớp 10A có bao nhiêu bạn không thích cả ba môn thể thao nói trên biết rằng có 6 bạn thích cả ba môn thể thao đó? + Cho hình vuông ABCD có cạnh bằng 2. Gọi M, N lần lượt là trung điểm đoạn thẳng AB, CD. Gọi H thuộc đoạn MN sao cho HM = 3HN. Lấy điểm I thuộc đường thẳng CD sao cho BI vuông góc với AH. Khi đó S_CAI thuộc khoảng nào sau đây? + Cho hai điểm A(-3,2), B(4,3). Điểm C thuộc trục Ox và có hoành độ dương để tam giác CAB vuông tại C. Khi đó tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?
Đề khảo sát Toán 10 lần 1 năm 2019 - 2020 trường Yên Phong 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh khối 10 đề kiểm tra khảo sát chất lượng môn Toán 10 lần 1 năm học 2019 – 2020 trường THPT Yên Phong số 1, tỉnh Bắc Ninh; đề gồm có 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 10 lần 1 năm 2019 – 2020 trường Yên Phong 1 – Bắc Ninh : + Một gia đình có ba người lớn và hai trẻ nhỏ đi xem xiếc mua vé hết 590.000 đồng. Một gia đình khác có hai người lớn và một trẻ nhỏ cũng đi xem xiếc và mua vé hết 370.000 đồng.Hỏi giá một vé của trẻ nhỏ bao nhiêu tiền? A. 80.000 đồng. B. 60.000 đồng. C. 50.000 đồng. D. 70.000 đồng. + Lớp 10A trường Yên Phong 1 – Bắc Ninh có 45 học sinh trong đó có 25 em thích môn Toán, 20 em thích môn Anh,18 em thích môn Văn, 6 em không thích ba môn trên và 5 em thích cả ba môn. Khi đó số em thích chỉ một trong ba môn trên là? [ads] + Một chiếc xe ô tô chuyển động với vận tốc xác định theo thời gian có phương trình v(t) = 4t^3 – t^4 (m/s). Ở đây t là đơn vị thời gian tính theo giây. Hỏi trong khoảng thời gian từ 0 đến 4 giây thì vận tốc của xe đạt giá trị lớn nhất bằng bao nhiêu? + Cho tam giác ABC. Tìm quỹ tích điểm M thỏa mãn: |2MA + 3MB + 4MC| = |MB – MA|. A. Quỹ tích của M là đường tròn bán kính AB/2. B. Quỹ tích của M là trung điểm của đoạn AB. C. Quỹ tích của M là đường tròn bán kính AB/9. D. Quỹ tích của M là đường trung trục của đoạn AB. + Tìm phương trình đường thẳng d: y = ax + b. Biết đường thẳng d đi qua điểm I(1;2) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 4. Khi đó a^2 + b^2 bằng?