Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đa giác, đa giác đều

Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đa giác, đa giác đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT 1. Đa giác: Đa giác A1A2…An là hình gồm n đoạn thẳng A1A2; A2A3;…AnA1 trong đó bất kì hai đoạn thẳng nào có một điểm chung cũng không cùng nằm trên một đường thẳng. 2. Đa giác lồi: Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác. 3. Các khái niệm khác. + Một đa giác có n đỉnh được gọi n-giác. + Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA + Dạng 1. Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác trong phần Tóm tắt lý thuyết ở trên. + Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Tổng các góc trong của đa giác n cạnh (n > 2) là (n – 2).180°. + Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. + Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa đa giác đều, công thức tính góc của đa giác đều. B. PHIẾU BÀI TỰ LUYỆN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình thang cân
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm: Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. 2. Tính chất: + Trong hình thang cân, hai cạnh bên bằng nhau. + Trong hình thang cân, hai đuờng chéo bằng nhau. 3. Dấu hiệu nhận biết: + Hình thang có hai góc kề một cạnh đáy bằng nhau là hình thang cân. + Hình thang có hai đường chéo bằng nhau là hình thang cân. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc, độ dài cạnh và diện tích hình thang cân. Phương pháp giải: Sử dụng tính chất hình thang cân về cạnh góc, đường chéo và công thức tính diện tích hình thang để tính toán. Dạng 2. Chứng minh hình thang cân. Phương pháp giải: Sử dụng dấu hiệu nhận biết hình thang cân. Dạng 3. Chứng minh các cạnh bằng nhau, các góc bằng nhau trong hình thang cân. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình thang
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc. Phương pháp giải: Sử dụng tính chất hai đường thẳng song song và tổng bốn góc của một tứ giác. Kết hợp các kiến thức đã học và tính chất dãy tỉ số bằng nhau, toán tổng hiệu … để tính ra số đo các góc. Dạng 2. Chứng minh hình thang, hình thang vuông. Phương pháp giải: Sử dụng định nghĩa hình thang, hình thang vuông. Dạng 3. Chứng minh mối liên hệ giữa các cạnh, tính diện tích của hình thang, hình thang vuông. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề tứ giác
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tứ giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CƠ BẢN Dạng 1. Tính số đo góc. Dạng 2. Tìm mối liên hệ giữa các cạnh, đường chéo của tứ giác. Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1. Tính số đo góc. Dạng 2. So sánh các độ dài. Dạng 3. Bài toán giải bằng phương trình tô màu. C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết
Tài liệu gồm 183 trang, được biên soạn bởi thầy giáo Nguyễn Chí Thành, tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án và lời giải chi tiết, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8 chương 3: Phương trình bậc nhất một ẩn. Trích dẫn tài liệu tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết: + Hai cây cọ mọc đối diện nhau ở hai bên bờ sông, cách nhau 50 thước, một cây cao 30 thước, một cây cao 20 thước. trên ngọn của mỗi cây có một con chim đang đậu. Bỗng nhiên cả hai con chim đều nhìn thấy một con cá bơi trên mặt nước giữa hai cây, chúng bổ nhào xuống con cá cùng một lúc với vận tốc như nhau và cùng đến đích một lúc. Tính khoảng cách từ gốc cây cao hơn đến con cá. + Tiểu sử của nhà toán học cố đại nổi tiếng Diophante (Đi – ô – phăng) được tóm tắt trên bia mộ của ông như sau: Hỡi người qua đường! Đây là nơi chôn cất di hài của Diophante, người mà một phần sáu cuộc đời là tuổi niên thiếu huy hoàng; một phần mười hai cuộc đời nữa trôi qua, trên cằm đã mọc râu lún phún. Diophante lấy vợ, một phần bảy cuộc đời trong cảnh vợ chồng hiếm hoi. Năm năm trôi qua, ông sung sướng khi có cậu con trai đầu lòng khôi ngô. Nhưng cậu ta chỉ sống được bằng nửa cuộc đời đẹp đẽ của cha. Rút cục thì với nỗi buồn thương sâu sắc, ông chỉ sống thêm được 4 năm nữa từ sau khi cậu ta lìa đời”. Tính tuổi thọ của Diophante. + Một người dự định đi từ A đến B trong một thời gian quy định với vận tốc 10km/h. Sau khi đi được nửa quãng đường người đó nghỉ 30 phút nên để đến B đúng dự định người đó tăng vận tốc lên 15km/h. Tính quãng đường AB.