Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn tập học kỳ 2 Toán 11 năm 2019 - 2020 trường THPT Yên Hòa - Hà Nội

Đề cương ôn tập học kỳ 2 Toán 11 năm học 2019 – 2020 trường THPT Yên Hòa – Hà Nội gồm có 27 trang, giúp học sinh ôn tập để chuẩn bị cho kỳ thi học kỳ 2 Toán 11 sắp tới. Trích dẫn đề cương ôn tập học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Yên Hòa – Hà Nội : + Ba góc A, B, C (A < B < C) của 1 tam giác tạo thành cấp số cộng. Biết góc lớn nhất gấp đôi góc bé nhất. Hiệu số đo độ của góc lớn nhất với góc nhỏ nhất bằng? + Một chiếc đồng hồ có tiếng chuông để báo số giờ, kể từ thời điểm 0 giờ, sau mỗi giờ số tiếng chuông kêu bằng đúng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. Hỏi một ngày đồng hồ đó kêu tổng cộng bao nhiêu tiếng chuông? + Xét các khẳng định sau: (1) Nếu dãy số (un): un = a^n và 0 < a < 1 thì lim un = 0. (2) Nếu lim un = +vc và lim vn = +vc thì lim (un – vn) = 0. (3) Nếu (un) là dãy tăng thì lim un = +vc. (4) Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn luôn giảm. Có bao nhiêu khẳng định đúng trong các khẳng định trên? + Cho dãy số (un) với un = (n + sin((a^2 – 1)n))/(n + 1). Hỏi a nhận giá trị bao nhiêu để lim un = 1. A. a tùy ý thuộc R. B. a chỉ nhận hai giá trị cộng trừ 1. C. a chỉ nhận các giá trị thực lớn hơn 1. D. a chỉ nhận các giá trị thực nhỏ hơn -1. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, SA = SB, AB vuông góc với SC. Gọi M là trung điểm SD. 1) Biểu diễn AM theo ba vectơ SA, SB, SC. 2) Chứng minh: AM vuông góc với AB.

Nguồn: toanmath.com

Đọc Sách

Phương pháp giải các dạng bài Toán 11 học kỳ 2 - Nguyễn Tiến Đạt
Tài liệu gồm 122 trang trình bày phương pháp giải các dạng toán trong chương trình học kỳ 2 Toán 11 (bao gồm cả Đại số & Giải tích 11 và Hình học 11), tài liệu được biên soạn bởi thầy Nguyễn Tiến Đạt. Khái quát nội dung tài liệu phương pháp giải các dạng bài Toán 11 học kỳ 2 – Nguyễn Tiến Đạt: PHẦN 1 . ĐẠI SỐ VÀ GIẢI TÍCH 11 Tìm giới hạn của dãy (un) có giới hạn hữu hạn. + Dạng 1: (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n), Q(n) là hai đa thức của n). + Dạng 2: (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n), Q(n) là các biểu thức chứa căn của n). + Dạng 3: (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n …. Chia cả tử và mẫu cho a^n với a là cơ số lớn nhất). + Dạng 4: Nhân lượng liên hợp. Giới hạn hàm số lý thuyết và phương pháp giải toán. [ads] Cách khử dạng vô định 0/0 (Dạng này thường gặp khi x → x0). + Dạng 1: Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là hai đa thức theo biến x. + Dạng 2: Nhân liên hợp. Giới hạn khi x tiến tới vô cực. Giới hạn một bên. Hàm số liên tục. Đếm số nghiệm. Sử dụng máy tính để tính nhanh giới hạn. PHẦN 2 . HÌNH HỌC 11 Bài toán góc trong hình học không gian. + Dạng 1: Góc giữa hai đường thẳng. + Dạng 2: Góc giữa đường thẳng và mặt phẳng. + Dạng 3: Góc giữa hai mặt phẳng. Bài toán khoảng cách trong hình học không gian. + Dạng 1: Khoảng cách từ một điểm đến một mặt phẳng. + Dạng 2: Khoảng cách giữa hai đường thẳng chéo nhau.
Đề cương ôn thi HK2 môn Toán lớp 11 GDTX Quảng Điền
Đề cương ôn thi HK2 môn Toán lớp 11 GDTX Quảng Điền – Hoàng Hữu Tài.
Đề Cương Ôn Tập HK2 Toán 11 Kết Nối Tri Thức Theo Từng Dạng Câu Hỏi